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Abstract
Using the exact diagonalization technique, we study the properties of the ground
state of a spin- 1

2 antiferromagnetic Heisenberg model for a zigzag polymer
chain with side radicals connected to the even sites. We consider the nearest-
neighbour exchange J and the next-nearest-neighbour exchange αJ along the
main chain, and J1 between the even site on the main chain and the radical site.
For small α the ground state is ferrimagnetic. For α > αc1, the ground state is a
spiral phase, which is characterized by a peak of the static structure factor S(q)

locating at an incommensurate value qmax. For α > αc2, the ground state is
antiferromagnetic. With increasing J1, αc1 decreases while αc2 has a maximum
at about J1 = 0.5. For very small J1 and α = 0.5, the spin configuration on the
main chain is a product of nearest-neighbour singlets. In the antiferromagnetic
phase, if J1 is large enough the even site and the radical site form a singlet with
exchange-decoupling from the odd site while the odd sites approximately form
an antiferromagnetic chain.

1. Introduction

Molecule ferromagnetism has attracted a great deal of interest over the past decades since some
organic ferromagnets such as p-NPNN [1–3], DTDA [4–6], p-CDTV [7] and poly-BIPO [8]
were synthesized. For poly-BIPO, a simplified structure was proposed in figure 1 of [8]. The
main chain consists of carbon atoms that each have a π -electron and R is a kind of side radical
containing an unpaired electron. In the original work in [8], both the π -electron and the
radical electron were assumed to be localized, and there exist antiferromagnetic correlations
between these electrons. The ground state is a ferrimagnet in which the nearest-neighbour
spin correlations are antiferromagnetic. This structure has also been described by the itinerant
models such as the Hubbard–Kondo model [9] and the Hubbard model [10, 11]. Both the
Hartree–Fock approximation (HFA) [9, 10] and the rigorous results [11] of these models exhibit
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Figure 1. A quasi-one dimensional organic polymer chain. J , α J and J1 label the exchange
interactions.

ferrimagnetic long-range ordering. However, if the next-nearest-neighbour (NNN) hopping is
considered, the ferrimagnetic ground state with high spin is unstable [12]. The HFA result
shows that there appear to be two kinds of charge density wave (CDW) and spin density wave
(SDW) successively when the NNN hopping increases. The exact diagonalization (ED) and
the constrained-path Monte Carlo (CPMC) techniques also show that when the NNN hopping
increases the ground state transits from the high-spin state to the low-spin state.

In this paper, we describe this structure as an antiferromagnetic Heisenberg chain with
both nearest-neighbour (NN) exchange J and NNN exchange αJ along the main chain, and
J1 between the even site of the main chain and the radical site. We are interested in the
influence of the frustration α on the ground state. In some localized spin systems, magnetic
frustration suppresses long-range order and stabilizes some exotic states such as the spin liquid
resonating valence bond state [13, 14]. For the antiferromagnetic Heisenberg model on the
pyrochlore lattice, when the ratio of the two competing exchange couplings is varied, quantum
phase transitions occur between spin gapped phases and the antiferromagnetic phases [15]. In
the quasi-one-dimensional inorganic spin-Peierls compound CuGeO3, due to the competition
between the nearest exchange and the next-nearest exchange, the system exhibits a transition
from a gapless phase to a gapped dimerized ground state [16, 17]. The critical NNN exchange
was obtained by the ED method [18, 19] and the density matrix renormalization group (DMRG)
techniques [20]. If an alternation δ of the NN exchanges is considered, the numerical results by
the DMRG method have shown that there is a disorder line in the parameter space separating
the antiferromagnetic phase and the spiral phase.

Because, in the absence of frustration, the quasi-one-dimensional model in figure 1 has a
ferrimagnetic ground state, its phase diagram with frustration will be different from that of the
one-dimensional spin- 1

2 Heisenberg antiferromagnetic chain. Our calculation by ED shows that
as the frustration α increases to a critical value αc1, there is a transition from the ferrimagnetic
(FI) phase to a spiral (SP) phase. As α increases continuously to another critical value αc2,
the SP phase transits to the antiferrimagnetic (AF) phase. These two critical points depend on
the NN exchange J1 between the site on the main chain and the radical site. In small-J1 and
large-J1 limits, the SP phase disappears. In small-J1 limit and when α = 0.5, the spin structure
of the main chain can be described as a product of NN singlets, which is a characteristic of the
1D spin- 1

2 Heisenberg antiferromagnetic chain [21]. However, for α < 0.5 and α > 0.5 the
ground state is FI and AF respectively because the spin correlations between the radical sites
can be ferromagnetic or antiferromagnetic.

In quasi-one-dimensional systems, lattice dimerization may be important to the physical
properties. In the case of CuGeO3 and poly-BIPO, the dimerization has been considered
in previous works. Our calculations show that the dimerization does not have a qualitative
influence on the phase diagram since it does not change the translation symmetry in the present
model. In this paper, we will neglect the alternation of the NN exchanges.

The organization of the paper is as follows. In section 2 the details of the model and
technique are given. In section 3 the phase diagram and the properties of the ground-state
phases are studied.
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2. Model and computational method

We consider the quasi-one-dimensional spin- 1
2 antiferromagnetic Heisenberg chain in figure 1.

The Hamiltonian can be written as follows:

H = J
(∑

i

Si · Si+1 + α
∑

i

Si · Si+2

)
+ J1

∑
i(even)

Si · Ti/2, (1)

where Si denotes the spin operator at the i th site on the main chain, and Ti is the spin operator
at the i th radical site, which connects to the 2i th site on the main chain. J is the NN exchange
and αJ is the NNN exchange along the main chain. J1 is the NN exchange between the site on
the main chain and the radical site. In the following discussion, we take J as the energy unit.
The parameters J , α and J1 are positive.

We use the Lanczos algorithm to diagonalize the Hamiltonian in a subspace with a given
z component Sz of the total spin S of the system [22]. In order to determine the quantum
number S of the total spin of the ground state, we calculate the mean value of the operator S2

in the ground state with Sz = 0. Since 〈S2〉 = S(S + 1), we can deduce the value of S. The
ground-state phases are characterized through the spin structure factor S(q):

S(q) = 1

N

∑
l,m

eiq(l−m)〈Pl · Pm〉, (2)

here Pl = S2l−1+S2l+Tl is the total spin operator in the lth unit cell. N is the number of sites in
the system. Although the ED can only deal with a small system, for the quasi-one-dimensional
inorganic spin-Peierls compound CuGeO3 the critical NNN exchange was obtained by this
method [18, 19]. For other one-dimensional interacting system such as the periodic Anderson
model and the Kondo lattice [23, 24], the magnetic correlation and phase diagram have been
determined accurately on the basis of the precise treatments of the finite-size effects observed
in the ED data.

3. Results and discussion

We use the Lanczos algorithm to determine the quantum number S of the total spin of the
system with N = 12, 18 and 24 sites. We use the open boundary condition to lift the twofold
degeneracy, which is also observed in the 1D spin- 1

2 chain with first- and second-neighbour
antiferromagnetic exchange [21]. As the frustration α is small, the ground state is ferrimagnetic
and has the spin S = 1

2 per unit cell. As α increases to a critical value αc1, the system has spin
S = 0. In order to exhibit the properties of the ground-state phases, in figure 2 we show the
spin structure factor S(q) for J1 = 1 and different α and lattice size N . For small α, S(q) has
a peak at qmax = 0, which indicates a ferrimagnetic (FI) state. As α > αc1 (e.g. α = 0.42), the
total spin is zero and the peak of S(q) locates at incommensurate value of q . This characteristic
indicates a spiral (SP) phase which is observed in the 1D spin- 1

2 antiferromagnetic Heisenberg
system with dimerization and frustration [20]. The spiral-like phase is also found in the 1D
Kondo and Hund lattice [25]. As the frustration α is enhanced continuously to another critical
value αc2, the antiferromagnetic (AF) phase is clearly identified with a peak of S(q) at qmax = π

and the total spin is still zero. Figures 2(a)–(c) show that the behaviour of the spin structure
factor S(q) is very similar for three lattice sizes although a size dependence of S(q) exists.

In figure 3 we present the phase diagram for systems with different lattice size N . The
lines with open circles separate the FI phase from the SP phase while the lines with filled
circles correspond to the transition points from the SP phase to the AF phase. In the whole
parameter space, the first critical point αc1 has a very small finite-size effect. For the second
critical point αc2, the finite-size effect is large near J1 = 0.5 and is small far from J1 = 0.5.
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Figure 2. Spin structure factor S(q) for J1 = 1 and different α and lattice size N .

Figure 3. Phase diagram for systems with different lattice size N . The lines with open circles
separate the FI phase from the SP phase while the lines with filled circles separate the SP phase
from the AF phase.

The critical frustrations αc1 and αc2 depend on the exchange J1 between the even site on the
main chain and the radical site. As J1 is enhanced, αc1 decreases while the second critical point
αc2 increases for J1 < 0.5 and decreases for J1 > 0.5. In the small-J1 or large-J1 limit, the SP
phase does not exist. We will give further discussion of this later.

In order to visualize the behaviour of spin configuration in the SP phase, we show in
figure 4 the spin structure factor S(q) for J1 = 0.5 and different α and lattice size N = 24.
At the first critical point αc1 = 0.47, S(q) peaks at about qmax = 0.3π , while near the second
critical point αc2 = 0.72, qmax continuously approaches π . For points close to αc2, S(q) has
a very broad peak near q = π and we cannot identify the maximum exactly. Since qmax is
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Figure 4. Spin structure factor S(q) for J1 = 0.5, N = 24 and different α.

Figure 5. The location qmax of the peak of S(q) as a function of the frustration α for different J1.

incommensurate and cannot be determined exactly near αc2, qmax will vary with lattice size
and the finite-size effect is larger near αc2 than near αc1. One can find this feature in figure 3.
Figure 5 shows the location qmax of the peak of S(q) as a function of the frustration α for
different J1.

In the Hubbard model, the finite-size effect decreases with increasing the on-site Coulomb
repulsion U because U is the short-range interaction [26]. Hence, we believe that the larger the
correlation length is, the stronger the finite-size effect becomes. Figure 6 shows the spin–spin
correlation 〈Si · S8〉 between the middle site and the i th site for N = 24 and α = αc2. One
can find that at the second critical point αc2 the spin–spin correlation 〈Si · S8〉 for i � 6 has a
larger size for J1 = 0.5. This means that the correlation decreases with distance more slowly
for J1 = 0.5 than for J1 = 0.1 and 1.0. Therefore, the finite-size effect is larger at J1 = 0.5
than that far from J1 = 0.5 because the correlation length is larger for J1 = 0.5.

In the 1D spin- 1
2 chain with first- and second-neighbour antiferromagnetic exchange, at

the special frustration α = 0.5, the exactly solvable ground state is a product of nearest-
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Figure 6. Spin–spin correlation 〈Si · S8〉 between the middle site and the i th site for the lattice size
N = 24.

Figure 7. The local spin–spin correlations as a function of α for different J1.

neighbour singlets and is twofold degenerate [21]. In the present model, a similar spin structure
is also found in the small-J1 limit. In figure 7, we show the local spin–spin correlations as a
function of α for different J1. Under the open boundary condition, the spin–spin correlations
are averaged over the full system. For small J1 (e.g. J1 = 0.1) and small α, there is a strong NN
antiferromagnetic correlation 〈Si · Si+1〉 (figures 7(a) and (b)) along the main chain while the
antiferromagnetic correlation 〈S2i ·Ti〉 between the even site on the main chain and the radical
site is weak. In the FI phase, these two kinds of antiferromagnetic correlation mediate the NNN
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ferromagnetic correlations (figures 7(d) and (e)) along the main chain and the ferromagnetic
correlation between the radical sites (figure 7(f)). For J1 = 0.1, as α increases to about 0.5 the
NN correlation 〈S2i−1 · S2i 〉 in figure 7(a) reaches the saturation value −0.75 of a spin singlet.
However, the NN correlation 〈S2i · S2i+1〉 in figure 7(b) nearly vanishes. Meanwhile, the NNN
correlations 〈Si · Si+2〉 (figures 7(d) and (e)) approach zero. This behaviour indicates that the
spin configuration on the main chain is a product of the NN singlets, which is similar to the
1D spin- 1

2 chain with NN and NNN antiferromagnetic exchanges [21]. However, the twofold
degeneracy is lifted because of the open boundary condition. Because the antiferromagnetic
correlation 〈S2i · Ti〉 still exists, the correlation 〈Ti · Ti+1〉 between two radical sites can be
ferromagnetic (e.g. 0.25) or antiferromagnetic (e.g. −0.5) near α = 0.5. As a result, for
α < 0.5 and α > 0.5, the ground state is ferrimagnetic and antiferromagnetic, respectively.
In figure 7, because J1 = 0.1 approaches but is not exactly zero, the SP phase still exists in a
narrow regime 0.57 > α > 0.53. For J1 = 0, the SP phase will disappear.

As the exchange J1 increases, the antiferromagnetic correlation 〈S2i ·Ti〉 is enhanced while
the NN correlation 〈Si ·Si+1〉 decreases. The transition between the FI phase and the SP phase
results from the competition between the frustration α and this NN correlation. Therefore, the
smaller the NN correlation is, the smaller the critical αc1. As a result, with increasing J1 the
critical αc1 decreases, as shown in figure 3.

In the FI phase, the NN antiferromagnetic correlation 〈Si · Si+1〉 plays an important role
in mediating the ferromagnetic correlation 〈Ti · Ti+1〉. This means that with increasing J1,
〈Ti · Ti+1〉 is weakened because 〈Si · Si+1〉 decreases. For large enough J1 (e.g. J1 = 5),
〈Ti · Ti+1〉 nearly vanishes while 〈S2i−1 · S2i+1〉 reaches the saturation value 0.25 of a
ferromagnetic correlation. In this case, the ferromagnetism is mainly contributed by the
ferromagnetic correlation between the odd sites along the main chain.

In the AF phase, as the exchange J1 increases a similar behaviour is observed. But there
are some quantitative differences. In the AF phase, for large J1 the correlations in figures 7(a),
(b), (e) and (f) almost vanish while the antiferromagnetic correlation 〈S2i · Ti〉 in figure 7(c)
reaches the saturation value −0.75 of a spin singlet. The NNN antiferromagnetic correlation
〈S2i−1 ·S2i+1〉 has a large strength −0.467, which approaches the value −0.443 of the NN spin
correlation of an infinite Heisenberg antiferromagnetic chain [27]. This feature shows that in
the AF phase if J1 is large enough the even site on the main chain and the connected radical
site nearly forms a singlet with exchange-decoupling from the odd site while the odd sites
approximately form an antiferromagnetic chain.

It is interesting to compare the present results with those from the itinerant models. In the
Hubbard–Kondo model for this polymer [12], the HFA result shows that as the NNN hopping
increases to a critical value ρc1, the ferromagnetic ground state with high spin is unstable
while there appears a phase with incommensurate CDW and SDW along the chain. As the
NNN hopping increases continuously to another critical value ρc2, the ground state exhibits a
commensurate CDW and SDW with a period of two sites. It is known that in the limit of large
on-site repulsion U , the Hubbard model at half-filling maps to the Heisenberg model. We find
that even for small U , the phases predicted by two models have some similarity. Comparing
the present results with those in [12], one finds that the SP phase and the AF phase in this paper
correspond to the incommensurate phase and commensurate phase in [12]. In the Peierls-
extended Hubbard model in [12], both the NNN hopping terms along the chain and between
the chain and the radical site are considered. The results by the ED and the CPMC techniques
also show that when the NNN hopping increases the ground state transits from the high-spin
state to the low-spin state.

In summary, we have studied the ground-state phase diagram of a spin- 1
2 antiferromagnetic

Heisenberg model for a zigzag polymer with side radicals. We take into account the NN
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exchange J and the NNN exchange αJ along the main chain, and J1 between the site of
the main chain and the radical site. The numerical results from ED show that for small α

the ground state is the FI phase. As α increases to a critical value αc1, the ground state is the
SP phase, which is characterized by the peak of the static structure factor S(q) locating at an
incommensurate value qmax. As α is enhanced to another critical value αc2, there is a transition
from the SP phase to the AF phase. These two critical values of α depend on the exchange
J1. With increasing J1, αc1 decreases while αc2 has a maximum at about J1 = 0.5. For very
small J1 or large enough J1, the SP phase does not exist. For very small J1 (e.g. J1 = 0.1), at
α = 0.5 the spin configuration on the main chain is a product of nearest-neighbour singlets. In
the AF phase, for large enough J1 the even site on the main chain and the connected radical site
forms a singlet with exchange-decoupling from the odd site while the odd sites approximately
form an antiferromagnetic chain.
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